270 research outputs found

    Monitoring Lys-tRNA\u3csup\u3eLys\u3c/sup\u3e Phosphatidylglycerol Transferase Activity

    Get PDF
    In some bacteria Lys-tRNALys is used both in translation and for the specific addition of Lys to phosphatidylglycerol in the cytoplasmic membrane. This reaction is catalyzed by the membrane protein MprF, and the lysyl-phosphatidylglycerol formed contributes to the resistance of these bacteria to various cationic antibacterial molecules. Obtaining proteins and reconstituting an in vitro system mimicking membrane conditions is a major challenge to studying the function of membrane proteins, especially when labile substrates such as Lys-tRNALys are required. Here we report methods to obtain a stable enriched membrane fraction containing MprF, and the techniques necessary to quantitatively monitor its activity in vitro and in vivo

    Transfer RNA Comes of Age

    Get PDF
    The year the journal RNA was founded was slated by some in scientific publishing to be the year that one particular type of RNA\u27s run in the spotlight would end. In 1995 I had recently started as a post-doc with Dieter Söll at Yale when he came into the lab to solemnly inform us all that an editor at a certain (S)cience journal had just told him “we won\u27t be publishing any more tRNA papers.” For a post-doc who had migrated across the Atlantic for the sole purpose of furthering his career by working on tRNA this was not great news, but at least the pizza was as good as promised in New Haven (if you need convincing, try the Italian and Veggie Bombs at Modern Apizza on State Street). Dieter consoled us by saying that plenty of other good journals were still interested in tRNA, plus there was this

    The Pros of Changing tRNA Identity

    Get PDF
    The notion that errors in protein synthesis are universally harmful to the cell has been questioned by findings that suggest such mistakes may sometimes be beneficial. However, how often these beneficial mistakes arise from programmed changes in gene expression as opposed to reduced accuracy of the translation machinery is still unclear. A new study published in JBC shows that some bacteria have beneficially evolved the ability to mistranslate specific parts of the genetic code, a trait that allows improved antibiotic resistance

    An aminoacyl-tRNA synthetase:elongation factor complex for substrate channeling in archaeal translation

    Get PDF
    Translation requires the specific attachment of amino acids to tRNAs by aminoacyl-tRNA synthetases (aaRSs) and the subsequent delivery of aminoacyl-tRNAs to the ribosome by elongation factor 1 alpha (EF-1α). Interactions between EF-1α and various aaRSs have been described in eukaryotes, but the role of these complexes remains unclear. To investigate possible interactions between EF-1α and other cellular components, a yeast two-hybrid screen was performed for the archaeon Methanothermobacter thermautotrophicus. EF-1α was found to form a stable complex with leucyl-tRNA synthetase (LeuRS; KD = 0.7 μM). Complex formation had little effect on EF-1α activity, but increased the kcat for Leu-tRNALeu synthesis ∼8-fold. In addition, EF-1α co-purified with the archaeal multi-synthetase complex (MSC) comprised of LeuRS, LysRS and ProRS, suggesting the existence of a larger aaRS:EF-1α complex in archaea. These interactions between EF-1α and the archaeal MSC contribute to translational fidelity both by enhancing the aminoacylation efficiencies of the three aaRSs in the complex and by coupling two stages of translation: aminoacylation of cognate tRNAs and their subsequent channeling to the ribosome

    The ABCs of the Ribosome

    Get PDF
    An ABC protein that binds the ribosomal exit site suggests a new mechanism for direct regulation of translation in response to changing ATP levels in the cell

    Relaxed Substrate Specificity Leads to Extensive tRNA Mischarging by \u3cem\u3eStreptococcus pneumoniae\u3c/em\u3e Class I and Class II Aminoacyl-tRNA Synthetases

    Get PDF
    Aminoacyl-tRNA synthetases provide the first step in protein synthesis quality control by discriminating cognate from noncognate amino acid and tRNA substrates. While substrate specificity is enhanced in many instances by cis- and trans-editing pathways, it has been revealed that in organisms such as Streptococcus pneumoniae some aminoacyl-tRNA synthetases display significant tRNA mischarging activity. To investigate the extent of tRNA mischarging in this pathogen, the aminoacylation profiles of class I isoleucyl-tRNA synthetase (IleRS) and class II lysyl-tRNA synthetase (LysRS) were determined. Pneumococcal IleRS mischarged tRNAIle with both Val, as demonstrated in other bacteria, and Leu in a tRNA sequence-dependent manner. IleRS substrate specificity was achieved in an editing-independent manner, indicating that tRNA mischarging would only be significant under growth conditions where Ile is depleted. Pneumococcal LysRS was found to misaminoacylate tRNALys with Ala and to a lesser extent Thr and Ser, with mischarging efficiency modulated by the presence of an unusual U4:G69 wobble pair in the acceptor stems of both pneumococcal tRNALys isoacceptors. Addition of the trans-editing factor MurM, which also functions in peptidoglycan synthesis, reduced Ala-tRNALys production by LysRS, providing evidence for cross talk between the protein synthesis and cell wall biogenesis pathways. Mischarging of tRNALys by AlaRS was also observed, and this would provide additional potential MurM substrates. More broadly, the extensive mischarging activities now described for a number of Streptococcus pneumoniae aminoacyl-tRNA synthetases suggest that adaptive misaminoacylation may contribute significantly to the viability of this pathogen during amino acid starvation

    How the Sequence of a Gene Can Tune Its Translation

    Get PDF
    Sixty-one codons specify 20 amino acids, offering cells many options for encoding a polypeptide sequence. Two new studies (Cannarrozzi et al., 2010, Tuller et al., 2010) now foster the idea that patterns of codon usage can control ribosome speed, fine-tuning translation to increase the efficiency of protein synthesis

    Translational Fidelity, Mistranslation, and the Cellular Responses to Stress

    Get PDF
    Faithful translation of mRNA into the corresponding polypeptide is a complex multistep process, requiring accurate amino acid selection, transfer RNA (tRNA) charging and mRNA decoding on the ribosome. Key players in this process are aminoacyl-tRNA synthetases (aaRSs), which not only catalyse the attachment of cognate amino acids to their respective tRNAs, but also selectively hydrolyse incorrectly activated non-cognate amino acids and/or misaminoacylated tRNAs. This aaRS proofreading provides quality control checkpoints that exclude non-cognate amino acids during translation, and in so doing helps to prevent the formation of an aberrant proteome. However, despite the intrinsic need for high accuracy during translation, and the widespread evolutionary conservation of aaRS proofreading pathways, requirements for translation quality control vary depending on cellular physiology and changes in growth conditions, and translation errors are not always detrimental. Recent work has demonstrated that mistranslation can also be beneficial to cells, and some organisms have selected for a higher degree of mistranslation than others. The aims of this Review Article are to summarize the known mechanisms of protein translational fidelity and explore the diversity and impact of mistranslation events as a potentially beneficial response to environmental and cellular stress

    Aminoacyl-tRNAs: Setting the Limits of the Genetic Code

    Get PDF
    Aminoacyl-tRNAs (aa-tRNAs) are simple molecules with a single purpose—to serve as substrates for translation. They consist of mature tRNAs to which an amino acid has been esterified at the 3′-end. The 20 different types of aa-tRNA are made by the 20 different aminoacyl-tRNA synthetases (aaRSs, of which there are two classes), one for each amino acid of the genetic code (Ibba and Söll 2000). This would be fine if it were not for the fact that such a straightforward textbook scenario is not true in a single known living organism. aa-tRNAs lie at the heart of gene expression; they interpret the genetic code by providing the interface between nucleic acid triplets in mRNA and the corresponding amino acids in proteins. The synthesis of aa-tRNAs impacts the accuracy of translation, the expansion of the genetic code, and even provides tangible links to primary metabolism. These central roles vest immense power in aa-tRNAs, and recent studies show just how complex and diverse their synthesis is

    Roles of tRNA in Cell Wall Biosynthesis

    Get PDF
    Recent research into various aspects of bacterial metabolism such as cell wall and antibiotic synthesis, degradation pathways, cellular stress, and amino acid biosynthesis has elucidated roles of aminoacyl‐transfer ribonucleic acid (aa‐tRNA) outside of translation. Although the two enzyme families responsible for cell wall modifications, aminoacyl‐phosphatidylglycerol synthases (aaPGSs) and Fem, were discovered some time ago, they have recently become of intense interest for their roles in the antimicrobial resistance of pathogenic microorganisms. The addition of positively charged amino acids to phosphatidylglycerol (PG) by aaPGSs neutralizes the lipid bilayer making the bacteria less susceptible to positively charged antimicrobial agents. Fem transferases utilize aa‐tRNA to form peptide bridges that link strands of peptidoglycan. These bridges vary among the bacterial species in which they are present and play a role in resistance to antibiotics that target the cell wall. Additionally, the formation of truncated peptides results in shorter peptide bridges and loss of branched linkages which makes bacteria more susceptible to antimicrobials. A greater understanding of the structure and substrate specificity of this diverse enzymatic family is necessary to aid current efforts in designing potential bactericidal agents. These two enzyme families are linked only by the substrate with which they modify the cell wall, aa‐tRNA; their structure, cell wall modification processes and the physiological changes they impart on the bacterium differ greatly
    corecore